Tensor completion by multi-rank via unitary transformation
نویسندگان
چکیده
One of the key problems in tensor completion is number uniformly random sample entries required for recovery guarantee. The main aim this paper to study n1×n2×n3 third-order based on transformed singular value decomposition, and provide a bound entries. Our approach make use multi-rank underlying instead its tubal rank bound. In numerical experiments synthetic imaging data sets, we demonstrate effectiveness our proposed Moreover, theoretical results are valid any unitary transformation applied n3-dimension under decomposition.
منابع مشابه
Low-Rank Tensor Completion by Riemannian Optimization∗
In tensor completion, the goal is to fill in missing entries of a partially known tensor under a low-rank constraint. We propose a new algorithm that performs Riemannian optimization techniques on the manifold of tensors of fixed multilinear rank. More specifically, a variant of the nonlinear conjugate gradient method is developed. Paying particular attention to the efficient implementation, ou...
متن کاملEfficient tensor completion: Low-rank tensor train
This paper proposes a novel formulation of the tensor completion problem to impute missing entries of data represented by tensors. The formulation is introduced in terms of tensor train (TT) rank which can effectively capture global information of tensors thanks to its construction by a wellbalanced matricization scheme. Two algorithms are proposed to solve the corresponding tensor completion p...
متن کاملLow-Rank Matrix and Tensor Completion via Adaptive Sampling
We study low rank matrix and tensor completion and propose novel algorithms that employ adaptive sampling schemes to obtain strong performance guarantees. Our algorithms exploit adaptivity to identify entries that are highly informative for learning the column space of the matrix (tensor) and consequently, our results hold even when the row space is highly coherent, in contrast with previous an...
متن کاملTensor completion via a multi-linear low-n-rank factorization model
The tensor completion problem is to recover a low-n-rank tensor from a subset of its entries. The main solution strategy has been based on the extensions of trace norm for the minimization of tensor rank via convex optimization. This strategy bears the computational cost required by the singular value decomposition (SVD) which becomes increasingly expensive as the size of the underlying tensor ...
متن کاملCross: Efficient Low-rank Tensor Completion
The completion of tensors, or high-order arrays, attracts significant attention in recent research. Current literature on tensor completion primarily focuses on recovery from a set of uniformly randomly measured entries, and the required number of measurements to achieve recovery is not guaranteed to be optimal. In addition, the implementation of some previous methods are NP-hard. In this artic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied and Computational Harmonic Analysis
سال: 2023
ISSN: ['1096-603X', '1063-5203']
DOI: https://doi.org/10.1016/j.acha.2023.03.007